
大模型 (LLM) 中常用的 Normalization 有什么? - 知乎
LayerNorm 其实目前主流的 Normalization 有个通用的公式 其中, 为均值, 为归一化的分母,比如对 LayerNorm 来说他是标准差,对 WeightNorm 来说是 L2 范数。 和 为可学习的参数,可 …
如何评价 Meta 新论文 Transformers without Normalization?
想法: 原文说的是without normalization,但是其实是换成了tanh,然后RMSNorm和hardtanh以及tanh的一种关系也有群友已经给出了,所以只是换了一种方式… 概括下来,就是不 …
如何理解Normalization,Regularization 和 standardization?
May 16, 2017 · 如何理解Normalization,Regularization 和 standardization? 我知道的是:normalization和standardization是降低极端值对模型的影响. 前者是把数据全部转成从0-1; …
如何理解归一化(Normalization)对于神经网络(深度学习)的帮 …
2016, Layer Normalization (没有发表) 用于RNN 2016, Instance Normalization (没有发表,但是经过了实践检验) 用于风格迁移 2016, Weight Normalization (NIPS) 2015, …
深度学习中 Batch Normalization为什么效果好? - 知乎
Normalization是一个统计学中的概念,我们可以叫它 归一化或者规范化,它并不是一个完全定义好的数学操作 (如加减乘除)。 它通过将数据进行偏移和尺度缩放调整,在数据预处理时是非常 …
标准化和归一化什么区别? - 知乎
缩放到0和1之间,保留原始数据的分布(Normalization—— Normalizer ()) 1就是常说的z-score归一化,2是min-max归一化。 举个例子来看看它们之间的区别,假设一个数据集包括「身高」 …
z-score 标准化 (zero-mean normalization) - 知乎
最常见的标准化方法就是 Z标准化,也是 SPSS 中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。 也叫 标准差 标准化,这种方法给予原始数据的均值(mean)和标准 …
l1正则与l2正则的特点是什么,各有什么优势? - 知乎
理解L1,L2 范数 L1,L2 范数即 L1-norm 和 L2-norm,自然,有L1、L2便也有L0、L3等等。因为在机器学习领域,L1 和 L2 范数应用比较多,比如作为正则项在回归中的使用 Lasso …
transformer 为什么使用 layer normalization,而不是其他的归一化 …
当然这都是瞎猜,不过有一个间接性的证据是,文章《Root Mean Square Layer Normalization》说将LN换成RMS Norm后效果会变好,而RMS Norm比LN更像L2 Normalzation。
一文了解Transformer全貌(图解Transformer)
Sep 26, 2025 · Transformer整体结构(引自谷歌论文) 可以看到Encoder包含一个Muti-Head Attention模块,是由多个Self-Attention组成,而Decoder包含两个Muti-Head Attention。Muti …